Overview of Metaheuristic Algorithms
Main Article Content
Abstract
Metaheuristic algorithms are optimization algorithms that are used to address complicated issues that cannot be solved using standard approaches. These algorithms are inspired by natural processes such as genetics, swarm behavior, and evolution, and they are used to explore a broad search space to identify the global optimum of a problem. Genetic algorithms, particle swarm optimization, ant colony optimization, simulated annealing, and tabu search are examples of popular metaheuristic algorithms. These algorithms have been widely utilized to address complicated issues in domains like as engineering, finance, and computer science. In general, the history of metaheuristic algorithms spans several decades and involves the development of various optimization algorithms that are inspired by natural systems. Metaheuristic algorithms have become a valuable tool in solving complex optimization problems in various fields, and they are likely to continue to play an important role in the development of new technologies and applications.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Asaad, R., & Ali, R. (2019). Back Propagation Neural Network(BPNN) and Sigmoid Activation Function in Multi-Layer Networks.Academic Journal Of Nawroz University,8(4), 216. doi: 10.25007/ajnu.v8n4a464.[2] Zhang C., Zhang Z.A, (2010). Survey of Recent Advances in Face Detection.Microsoft Corporation; Albuquerque, NM, USA. TechReport, No. MSR-TR-2010-66.[3] 3.Ekman P., Friesen W., Hager J.(2002). Facial Action Coding System: The Manual on CD ROM.A Human Face; Salt Lake City, UT, USA.[4] Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatial-contextual information.European Journal of Remote Sensing,47(1), 389-411.[5] Kwon, O. W., Chan, K., Hao, J., & Lee, T. W. (2003). Emotion recognition by speech signals. InEighth European Conference on Speech Communication and Technology.[6] Schuller, B., Rigoll, G., & Lang, M. (2003, April). Hidden Markov model-based speech emotion recognition. In2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP'03).(Vol. 2, pp. II-1). IEEE.[7] El Ayadi, M., Kamel, M. S., & Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases.Pattern Recognition,44(3), 572-587.[8] Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion recognition in human-computer interaction.IEEE Signal processing magazine,18(1), 32-80.[9] Nwe, T. L., Foo, S. W., & De Silva, L. C. (2003). Speech emotion recognition using hidden Markov models.Speech communication,41(4), 603-623.[10] Busso, C., Lee, S., & Narayanan, S. (2009). Analysis of emotionally salient aspects of fundamental frequency for emotion detection.IEEE transactions on audio, speech, and language processing,17(4), 582-596