Portable Few-Shot Learning for Early Warning Systems in Small Private Online Courses: A CNN-Based Predictive Framework for Student Performance

Main Article Content

Maria Crisella Dela Cruz
Saman M. Almufti
Jelena Bošković

Abstract

This study develops a portable early warning system designed to predict student academic performance in Small Private Online Courses (SPOCs) by leveraging few-shot learning techniques and convolutional neural networks (CNNs). Addressing the persistent challenges posed by limited sample sizes and the absence of face-to-face interactions in asynchronous online environments, the research explores whether small-sample behavioral data derived from multiple SPOCs can support reliable and transferable predictive models. The dataset comprises more than 4.4 million LMS log entries collected from four online courses sharing similar instructional designs and taught by a single instructor. After comprehensive preprocessing—encompassing feature extraction, weekly aggregation, and normalization—18 week-specific CNN models were trained to capture the temporal progression of student learning behaviors. The results indicate that meaningful prediction accuracy emerges by the fifth week, with performance exceeding 80% from week eight onward. Portability was further validated by applying the model to an additional course, where accuracy remained at or above 81%, confirming its robustness under consistent instructional conditions. The findings highlight the potential of few-shot learning to sustain predictive performance despite limited training samples, offering educators a viable foundation for timely interventions and institutional adoption of precision-driven academic support systems.

Article Details

Section

Articles

How to Cite

Dela Cruz, M. C., M. Almufti, S., & Bošković , J. . (2024). Portable Few-Shot Learning for Early Warning Systems in Small Private Online Courses: A CNN-Based Predictive Framework for Student Performance. Qubahan Techno Journal, 3(4), 1-13. https://doi.org/10.48161/qtj.v3n4a42

References

L. Jiang and G. K. S. Al-Shaibani, “Influencing factors of students’ small private online course-based learning adaptability in a higher vocational college in China,” Interactive Learning Environments, vol. 32, no. 3, 2024, doi: 10.1080/10494820.2022.2105901. DOI: https://doi.org/10.1080/10494820.2022.2105901

X. M. Zhang, J. Y. Yu, Y. Yang, C. P. Feng, J. Lyu, and S. L. Xu, “A flipped classroom method based on a small private online course in physiology,” Adv Physiol Educ, vol. 43, no. 3, 2019, doi: 10.1152/advan.00143.2018. DOI: https://doi.org/10.1152/advan.00143.2018

M. K. Sharma, H. A. Alkhazaleh, S. Askar, N. H. Haroon, S. M. Almufti, and M. R. Al Nasar, “FEM-supported machine learning for residual stress and cutting force analysis in micro end milling of aluminum alloys,” International Journal of Mechanics and Materials in Design, vol. 20, no. 5, pp. 1077–1098, Oct. 2024, doi: 10.1007/s10999-024-09713-9. DOI: https://doi.org/10.1007/s10999-024-09713-9

D. A. Majeed et al., “DATA ANALYSIS AND MACHINE LEARNING APPLICATIONS IN ENVIRONMENTAL MANAGEMENT,” Jurnal Ilmiah Ilmu Terapan Universitas Jambi, vol. 8, no. 2, pp. 398–408, Sep. 2024, doi: 10.22437/jiituj.v8i2.32769. DOI: https://doi.org/10.22437/jiituj.v8i2.32769

P. H. Nguyen, S. M. Almufti, J. A. Esponda-Pérez, D. Salguero García, I. Haris, and R. Tsarev, “The Impact of E-Learning on the Processes of Learning and Memorization,” 2024, pp. 218–226. doi: 10.1007/978-3-031-70595-3_23. DOI: https://doi.org/10.1007/978-3-031-70595-3_23

I. M. Putri, “ASUHAN KEPERAWATAN PADA TN.SI DENGAN CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) DI RUANG RAWAT INAP A RSUD KANJURUAN KEPANJEN,” Undergraduate thesis, Universitas Muhammadiyah Malang., vol. 14, no. 1, 2023.

Ç. Sıcakyüz, R. Rajab Asaad, S. Almufti, and N. R. Rustamova, “Adaptive Deep Learning Architectures for Real-Time Data Streams in Edge Computing Environments,” Qubahan Techno Journal, vol. 3, no. 2, pp. 1–14, Jun. 2024, doi: 10.48161/qtj.v3n2a25. DOI: https://doi.org/10.48161/qtj.v3n2a25

Z. Arif Ali, Z. H. Abduljabbar, H. A. Tahir, A. Bibo Sallow, and S. M. Almufti, “eXtreme Gradient Boosting Algorithm with Machine Learning: a Review,” Academic Journal of Nawroz University, vol. 12, no. 2, pp. 320–334, May 2023, doi: 10.25007/ajnu.v12n2a1612. DOI: https://doi.org/10.25007/ajnu.v12n2a1612

G. N. Vivekananda et al., “Retracing-efficient IoT model for identifying the skin-related tags using automatic lumen detection,” Intelligent Data Analysis, vol. 27, pp. 161–180, 2023, doi: 10.3233/IDA-237442. DOI: https://doi.org/10.3233/IDA-237442

M. Liu, “An IoT-Enabled Mental Health Monitoring System for English Language Students Using Generative Adversarial Network Algorithm,” Mobile Networks and Applications, 2024, doi: 10.1007/s11036-024-02408-7. DOI: https://doi.org/10.1007/s11036-024-02408-7

Z. H. Chao, L. Yi, L. Min, and Y. Y. Long, “IoT-Enabled Prediction Model for Health Monitoring of College Students in Sports Using Big Data Analytics and Convolutional Neural Network,” Mobile Networks and Applications, 2024, doi: 10.1007/s11036-024-02370-4. DOI: https://doi.org/10.1007/s11036-024-02370-4

R. Mahafdah, S. Bouallegue, and R. Bouallegue, “Enhancing e-learning through AI: advanced techniques for optimizing student performance,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/PEERJ-CS.2576. DOI: https://doi.org/10.7717/peerj-cs.2576

A. Albattat and K. J. Rustamov, “A Unified Multi-Layer Framework for Detecting and Mitigating Web Application Attacks in Cloud-Native Environments,” Qubahan Techno Journal, vol. 1, no. 4, pp. 15–26, Nov. 2022, doi: 10.48161/qtj.v1n4a26. DOI: https://doi.org/10.48161/qtj.v1n4a26

N. Rustamova, R. Rajab Asaad, and D. Fayzieva, “Blockchain-Driven Security Models for Privacy Preservation in IoT-Based Smart Cities,” Qubahan Techno Journal, pp. 1–17, Dec. 2023, doi: 10.48161/qtj.v2n4a22. DOI: https://doi.org/10.48161/qtj.v2n4a22

R. Asaad, R. Ismail Ali, and S. Almufti, “Hybrid Big Data Analytics: Integrating Structured and Unstructured Data for Predictive Intelligence,” Qubahan Techno Journal, Apr. 2022, doi: 10.48161/qtj.v1n2a14. DOI: https://doi.org/10.48161/qtj.v1n2a14

J. A. Esponda-Pérez, M. A. Mousse, S. M. Almufti, I. Haris, S. Erdanova, and R. Tsarev, “Applying Multiple Regression to Evaluate Academic Performance of Students in E-Learning,” 2024, pp. 227–235. doi: 10.1007/978-3-031-70595-3_24. DOI: https://doi.org/10.1007/978-3-031-70595-3_24

J. A. Esponda-Pérez et al., “Application of Chi-Square Test in E-learning to Assess the Association Between Variables,” 2024, pp. 274–281. doi: 10.1007/978-3-031-70595-3_28. DOI: https://doi.org/10.1007/978-3-031-70595-3_28

R. Rajab Asaad, R. Ismael Ali, Z. Arif Ali, and A. Ahmad Shaaban, “Image Processing with Python Libraries,” Academic Journal of Nawroz University, vol. 12, no. 2, pp. 410–416, Jun. 2023, doi: 10.25007/ajnu.v12n2a1754. DOI: https://doi.org/10.25007/ajnu.v12n2a1754

R. Rajab Asaad, R. Ismael Ali, A. Ahmad Shaban, and M. Shamal Salih, “Object Detection using the ImageAI Library in Python,” Polaris Global Journal of Scholarly Research and Trends, vol. 2, no. 2, pp. 1–9, Apr. 2023, doi: 10.58429/pgjsrt.v2n2a143. DOI: https://doi.org/10.58429/pgjsrt.v2n2a143

S. M. Abdulrahman, R. R. Asaad, H. B. Ahmad, A. Alaa Hani, S. R. M. Zeebaree, and A. B. Sallow, “Machine Learning in Nonlinear Material Physics,” Journal of Soft Computing and Data Mining, vol. 5, no. 1, Jun. 2024, doi: 10.30880/jscdm.2024.05.01.010. DOI: https://doi.org/10.30880/jscdm.2024.05.01.010

A. B. Sallow, R. R. Asaad, H. B. Ahmad, S. Mohammed Abdulrahman, A. A. Hani, and S. R. M. Zeebaree, “Machine Learning Skills To K–12,” Journal of Soft Computing and Data Mining, vol. 5, no. 1, Jun. 2024, doi: 10.30880/jscdm.2024.05.01.011. DOI: https://doi.org/10.30880/jscdm.2024.05.01.011

S. M. Almufti, B. Wasfi Salim, and R. Rajab Asaad, “Automatic Verification for Handwritten Based on GLCM Properties and Seven Moments,” Academic Journal of Nawroz University, vol. 12, no. 1, pp. 130–136, Feb. 2023, doi: 10.25007/ajnu.v12n1a1651. DOI: https://doi.org/10.25007/ajnu.v12n1a1651

S. M. Almufti, R. B. Marqas, Z. A. Nayef, and T. S. Mohamed, “Real Time Face-mask Detection with Arduino to Prevent COVID-19 Spreading,” Qubahan Academic Journal, vol. 1, no. 2, pp. 39–46, Apr. 2021, doi: 10.48161/qaj.v1n2a47. DOI: https://doi.org/10.48161/qaj.v1n2a47

S. M. Almufti et al., “INTELLIGENT HOME IOT DEVICES: AN EXPLORATION OF MACHINE LEARNING-BASED NETWORKED TRAFFIC INVESTIGATION,” Jurnal Ilmiah Ilmu Terapan Universitas Jambi, vol. 8, no. 1, pp. 1–10, May 2024, doi: 10.22437/jiituj.v8i1.32767. DOI: https://doi.org/10.22437/jiituj.v8i1.32767