Toward Human-Centered Artificial Intelligence in Education: Adaptive Learning Models for Personalized and Equitable Academic Outcomes
Main Article Content
Abstract
This research paper examines the integration of human-centered principles into adaptive learning systems with the objective of achieving personalized and equitable academic outcomes. The study addresses technical, ethical, and pedagogical aspects of utilizing artificial intelligence (AI) in education. Through a comprehensive literature review and mixed-methods research—including quantitative surveys, qualitative interviews, and analysis of system logs—the paper demonstrates how adaptive learning models can enhance student engagement, improve academic performance, and reduce disparities in learning access. The ethical challenges of privacy, algorithmic transparency, digital inequity, and potential biases are carefully analyzed, and mitigation strategies are proposed. Our findings indicate that while AI-based educational tools offer substantial benefits in personalization and efficiency, a human-centered approach that integrates ethical oversight and stakeholder engagement is essential for ensuring equitable outcomes. The paper concludes with recommendations for policymakers and educators, proposing a framework for future research that centers human values and equitable resource distribution.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Y. Feldman-Maggor, M. Cukurova, C. Kent, and G. Alexandron, “The Impact of Explainable AI on Teachers’ Trust and Acceptance of AI EdTech Recommendations: The Power of Domain-specific Explanations,” Int J Artif Intell Educ, 2025, doi: 10.1007/s40593-025-00486-6. DOI: https://doi.org/10.1007/s40593-025-00486-6
T. Nazaretsky, M. Ariely, M. Cukurova, and G. Alexandron, “Teachers’ trust in AI-powered educational technology and a professional development program to improve it,” British Journal of Educational Technology, vol. 53, no. 4, 2022, doi: 10.1111/bjet.13232. DOI: https://doi.org/10.1111/bjet.13232
J. A. Esponda-Pérez, M. A. Mousse, S. M. Almufti, I. Haris, S. Erdanova, and R. Tsarev, “Applying Multiple Regression to Evaluate Academic Performance of Students in E-Learning,” 2024, pp. 227–235. doi: 10.1007/978-3-031-70595-3_24. DOI: https://doi.org/10.1007/978-3-031-70595-3_24
O. Viberg et al., “What Explains Teachers’ Trust in AI in Education Across Six Countries?,” Int J Artif Intell Educ, vol. 35, no. 3, 2025, doi: 10.1007/s40593-024-00433-x. DOI: https://doi.org/10.1007/s40593-024-00433-x
C. Shin, D. G. Seo, S. Jin, S. H. Lee, and H. J. Park, “Educational Technology in the University: A Comprehensive Look at the Role of a Professor and Artificial Intelligence,” IEEE Access, vol. 12, 2024, doi: 10.1109/ACCESS.2024.3447067. DOI: https://doi.org/10.1109/ACCESS.2024.3447067
S. Sadeghian, A. Uhde, and M. Hassenzahl, “The Soul of Work: Evaluation of Job Meaningfulness and Accountability in Human-AI Collaboration,” Proc ACM Hum Comput Interact, vol. 8, no. 1, 2024, doi: 10.1145/3637407. DOI: https://doi.org/10.1145/3637407
Q. Liang, J. Gou, Z. Wang, and M. Dabić, “Affordances and Constraints of Automation and Augmentation: Lessons Learned From Development of a Human-AI Collaboration Business Simulation Platform,” Journal of Global Information Management, vol. 32, no. 1, 2024, doi: 10.4018/JGIM.357260. DOI: https://doi.org/10.4018/JGIM.357260
S. M. Almufti, “Vibrating Particles System Algorithm performance in solving Constrained Optimization Problem,” Academic Journal of Nawroz University, vol. 11, no. 3, pp. 231–242, Aug. 2022, doi: 10.25007/ajnu.v11n3a1499. DOI: https://doi.org/10.25007/ajnu.v11n3a1499
D. Trilling, “Communicative Feedback Loops in the Digital Society,” Weizenbaum Journal of the Digital Society, vol. 4, no. 2, 2024, doi: 10.34669/wi.wjds/4.2.4.
N. Kerimbayev, K. Adamova, V. Jotsov, R. Shadiev, Z. Umirzakova, and A. Nurymova, “Organization of Feedback in the Intelligent Learning Systems,” in International IEEE Conference proceedings, IS, 2024. doi: 10.1109/IS61756.2024.10705178. DOI: https://doi.org/10.1109/IS61756.2024.10705178
L. Introzzi, J. Zonca, F. Cabitza, P. Cherubini, and C. Reverberi, “Enhancing human-AI collaboration: The case of colonoscopy,” Digestive and Liver Disease, vol. 56, no. 7, 2024, doi: 10.1016/j.dld.2023.10.018. DOI: https://doi.org/10.1016/j.dld.2023.10.018
J. Senoner, S. Schallmoser, B. Kratzwald, S. Feuerriegel, and T. Netland, “Explainable AI improves task performance in human–AI collaboration,” Sci Rep, vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-82501-9. DOI: https://doi.org/10.1038/s41598-024-82501-9
P. Brusilovsky, “AI in Education, Learner Control, and Human-AI Collaboration,” 2024. doi: 10.1007/s40593-023-00356-z. DOI: https://doi.org/10.1007/s40593-023-00356-z
S. K. Banihashem, H. Dehghanzadeh, D. Clark, O. Noroozi, and H. J. A. Biemans, “Learning analytics for online game-Based learning: a systematic literature review,” Behaviour and Information Technology, vol. 43, no. 12, 2024, doi: 10.1080/0144929X.2023.2255301. DOI: https://doi.org/10.1080/0144929X.2023.2255301
S. M. Almufti, R. B. Marqas, R. R. Asaad, and A. A. Shaban, “Cuckoo search algorithm: overview, modifications, and applications,” 2025. [Online]. Available: www.sciencepubco.com/index.php/IJSW DOI: https://doi.org/10.14419/efkvvd44
A. Ahmed Shaban, S. M. Almufti, and R. R. Asaad, “Metaheuristic Algorithms for Engineering and CombinatorialOptimization: A Comparative Study Across Problems Categories and Benchmarks,” International Journal of Scientific World, vol. 11, no. 2, 2025, doi: 10.14419/0hndc578. DOI: https://doi.org/10.14419/0hndc578
P. H. Nguyen, S. M. Almufti, J. A. Esponda-Pérez, D. Salguero García, I. Haris, and R. Tsarev, “The Impact of E-Learning on the Processes of Learning and Memorization,” 2024, pp. 218–226. doi: 10.1007/978-3-031-70595-3_23. DOI: https://doi.org/10.1007/978-3-031-70595-3_23
J. A. Esponda-Pérez et al., “Application of Chi-Square Test in E-learning to Assess the Association Between Variables,” 2024, pp. 274–281. doi: 10.1007/978-3-031-70595-3_28. DOI: https://doi.org/10.1007/978-3-031-70595-3_28
S. Doroudi, “On the paradigms of learning analytics: Machine learning meets epistemology,” Computers and Education: Artificial Intelligence, vol. 6, 2024, doi: 10.1016/j.caeai.2023.100192. DOI: https://doi.org/10.1016/j.caeai.2023.100192
I. Masiello, Z. Mohseni, F. Palma, S. Nordmark, H. Augustsson, and R. Rundquist, “A Current Overview of the Use of Learning Analytics Dashboards,” 2024. doi: 10.3390/educsci14010082. DOI: https://doi.org/10.3390/educsci14010082
M. Lucas, Y. Zhang, P. Bem-haja, and P. N. Vicente, “The interplay between teachers’ trust in artificial intelligence and digital competence,” Educ Inf Technol (Dordr), vol. 29, no. 17, 2024, doi: 10.1007/s10639-024-12772-2. DOI: https://doi.org/10.1007/s10639-024-12772-2
M. A. Ayanwale, O. P. Adelana, and T. T. Odufuwa, “Exploring STEAM teachers’ trust in AI-based educational technologies: a structural equation modelling approach,” Discover Education, vol. 3, no. 1, 2024, doi: 10.1007/s44217-024-00092-z. DOI: https://doi.org/10.1007/s44217-024-00092-z
J. Sun, R. Zhang, and P. B. Forsyth, “The Effects of Teacher Trust on Student Learning and the Malleability of Teacher Trust to School Leadership: A 35-Year Meta-Analysis,” 2023. doi: 10.1177/0013161X231183662. DOI: https://doi.org/10.1177/0013161X231183662
M. Polatcan, P. Özkan, and M. Ş. Bellibaş, “Cultivating teacher innovativeness through transformational leadership and teacher agency in schools: the moderating role of teacher trust,” Journal of Professional Capital and Community, vol. 9, no. 3, 2024, doi: 10.1108/JPCC-01-2024-0008. DOI: https://doi.org/10.1108/JPCC-01-2024-0008
M. Ş. Bellibaş and S. Gümüş, “The Effect of Learning-Centred Leadership and Teacher Trust on Teacher Professional Learning: Evidence from a Centralised Education System,” Professional Development in Education, vol. 49, no. 5, 2023, doi: 10.1080/19415257.2021.1879234. DOI: https://doi.org/10.1080/19415257.2021.1879234
Y. F. Hendawy Al-Mahdy, P. Hallinger, M. Emam, W. Hammad, K. M. Alabri, and K. Al-Harthi, “Supporting teacher professional learning in Oman: The effects of principal leadership, teacher trust, and teacher agency,” Educational Management Administration and Leadership, vol. 52, no. 2, 2024, doi: 10.1177/17411432211064428. DOI: https://doi.org/10.1177/17411432211064428
A. J. Pan, Y. C. Huang, and C. F. Lai, “Constructing hands-on distance labs: the development and implementation of an Intelligent Learning Management System (ILMS-d) in undergraduate IoT courses,” Interactive Learning Environments, vol. 32, no. 10, 2024, doi: 10.1080/10494820.2023.2263061. DOI: https://doi.org/10.1080/10494820.2023.2263061
D. A. Majeed et al., “DATA ANALYSIS AND MACHINE LEARNING APPLICATIONS IN ENVIRONMENTAL MANAGEMENT,” Jurnal Ilmiah Ilmu Terapan Universitas Jambi, vol. 8, no. 2, pp. 398–408, Sep. 2024, doi: 10.22437/jiituj.v8i2.32769. DOI: https://doi.org/10.22437/jiituj.v8i2.32769
A. B. Sallow, R. R. Asaad, H. B. Ahmad, S. Mohammed Abdulrahman, A. A. Hani, and S. R. M. Zeebaree, “Machine Learning Skills To K–12,” Journal of Soft Computing and Data Mining, vol. 5, no. 1, Jun. 2024, doi: 10.30880/jscdm.2024.05.01.011. DOI: https://doi.org/10.30880/jscdm.2024.05.01.011
B. C. Cheong, “Transparency and accountability in AI systems: safeguarding wellbeing in the age of algorithmic decision-making,” Frontiers in Human Dynamics, vol. 6, Jul. 2024, doi: 10.3389/fhumd.2024.1421273. DOI: https://doi.org/10.3389/fhumd.2024.1421273
N. Rustamova, R. Rajab Asaad, and D. Fayzieva, “Blockchain-Driven Security Models for Privacy Preservation in IoT-Based Smart Cities,” Qubahan Techno Journal, pp. 1–17, Dec. 2023, doi: 10.48161/qtj.v2n4a22. DOI: https://doi.org/10.48161/qtj.v2n4a22
R. Asaad, R. Ismail Ali, and S. Almufti, “Hybrid Big Data Analytics: Integrating Structured and Unstructured Data for Predictive Intelligence,” Qubahan Techno Journal, Apr. 2022, doi: 10.48161/qtj.v1n2a14. DOI: https://doi.org/10.48161/qtj.v1n2a14
D. Ghorbanzadeh, J. F. Espinosa-Cristia, N. S. G. Abdelrasheed, S. S. S. Mostafa, S. Askar, and S. M. Almufti, “Role of innovative behaviour as a missing linchpin in artificial intelligence adoption to enhancing job security and job performance,” Syst Res Behav Sci, 2024, doi: 10.1002/sres.3076. DOI: https://doi.org/10.1002/sres.3076
M. K. Sharma, H. A. Alkhazaleh, S. Askar, N. H. Haroon, S. M. Almufti, and M. R. Al Nasar, “FEM-supported machine learning for residual stress and cutting force analysis in micro end milling of aluminum alloys,” International Journal of Mechanics and Materials in Design, vol. 20, no. 5, pp. 1077–1098, Oct. 2024, doi: 10.1007/s10999-024-09713-9. DOI: https://doi.org/10.1007/s10999-024-09713-9
T. Thirugnanam et al., “PIRAP: Medical Cancer Rehabilitation Healthcare Center Data Maintenance Based on IoT-Based Deep Federated Collaborative Learning,” Int J Coop Inf Syst, Jun. 2023, doi: 10.1142/S0218843023500053. DOI: https://doi.org/10.1142/S0218843023500053
H. B. Ahmad, R. R. Asaad, S. M. Almufti, A. A. Hani, A. B. Sallow, and S. R. M. Zeebaree, “SMART HOME ENERGY SAVING WITH BIG DATA AND MACHINE LEARNING,” Jurnal Ilmiah Ilmu Terapan Universitas Jambi, vol. 8, no. 1, pp. 11–20, May 2024, doi: 10.22437/jiituj.v8i1.32598. DOI: https://doi.org/10.22437/jiituj.v8i1.32598