A Comprehensive Framework for Predicting Student Performance Using Machine Learning in Online Education

Main Article Content

Johan Winsli G. Felix
Fatima E. Supan
Feruza Makhammatkosimovna Kuchkarova

Abstract

The rapid expansion of online education has created an urgent need for data-driven tools to predict student performance and enable proactive support. This paper presents a comprehensive machine learning framework designed to model and forecast academic outcomes using behavioral, cognitive, and social metrics. Validated on two large-scale datasets—the Open University Learning Analytics Dataset (OULAD) and Kalboard 360—our framework integrates a rigorous pipeline for data preprocessing, feature engineering, and model interpretation. We engineer novel quantitative features, including a Weekly Engagement Consistency Index (WECI) and an Assignment Timeliness Score (ATS), and evaluate multiple algorithms. The XGBoost model achieved superior performance with an AUC of 0.92 and an F1-Score of 0.88. Crucially, we integrate SHAP (SHapley Additive exPlanations) for model interpretability, revealing WECI and ATS as the most salient predictors. This work demonstrates that a systematic framework leveraging engineered features and ensemble methods can accurately identify at-risk students, providing a scalable solution for early intervention and personalized learning pathways in digital education.

Article Details

Section

Articles

How to Cite

Winsli G. Felix, J., E. Supan, F., & Makhammatkosimovna Kuchkarova, F. (2025). A Comprehensive Framework for Predicting Student Performance Using Machine Learning in Online Education. Qubahan Techno Journal, 4(1), 16-22. https://doi.org/10.48161/qtj.v4n1a44

References

S. M. Almufti and A. M. Abdulazeez, “An Integrated Gesture Framework of Smart Entry Based on Arduino and Random Forest Classifier,” Indonesian Journal of Computer Science, vol. 13, no. 1, Feb. 2024, doi: 10.33022/ijcs.v13i1.3735. DOI: https://doi.org/10.33022/ijcs.v13i1.3735

M. Benvenuti et al., “Artificial intelligence and human behavioral development: A perspective on new skills and competences acquisition for the educational context,” Comput Human Behav, vol. 148, 2023, doi: 10.1016/j.chb.2023.107903. DOI: https://doi.org/10.1016/j.chb.2023.107903

A. B. Sallow, R. R. Asaad, H. B. Ahmad, S. Mohammed Abdulrahman, A. A. Hani, and S. R. M. Zeebaree, “Machine Learning Skills To K–12,” Journal of Soft Computing and Data Mining, vol. 5, no. 1, Jun. 2024, doi: 10.30880/jscdm.2024.05.01.011. DOI: https://doi.org/10.30880/jscdm.2024.05.01.011

S. M. Abdulrahman, R. R. Asaad, H. B. Ahmad, A. Alaa Hani, S. R. M. Zeebaree, and A. B. Sallow, “Machine Learning in Nonlinear Material Physics,” Journal of Soft Computing and Data Mining, vol. 5, no. 1, Jun. 2024, doi: 10.30880/jscdm.2024.05.01.010. DOI: https://doi.org/10.30880/jscdm.2024.05.01.010

B. Taha Chicho, A. Mohsin Abdulazeez, D. Qader Zeebaree, and D. Assad Zebari, “Machine Learning Classifiers Based Classification For IRIS Recognition,” Qubahan Academic Journal, vol. 1, no. 2, pp. 106–118, May 2021, doi: 10.48161/qaj.v1n2a48. DOI: https://doi.org/10.48161/qaj.v1n2a48

G. N. Vivekananda et al., “Retracing-efficient IoT model for identifying the skin-related tags using automatic lumen detection,” Intelligent Data Analysis, vol. 27, pp. 161–180, 2023, doi: 10.3233/IDA-237442. DOI: https://doi.org/10.3233/IDA-237442

J. A. Esponda-Pérez, M. A. Mousse, S. M. Almufti, I. Haris, S. Erdanova, and R. Tsarev, “Applying Multiple Regression to Evaluate Academic Performance of Students in E-Learning,” 2024, pp. 227–235. doi: 10.1007/978-3-031-70595-3_24. DOI: https://doi.org/10.1007/978-3-031-70595-3_24

T. Thirugnanam et al., “PIRAP: Medical Cancer Rehabilitation Healthcare Center Data Maintenance Based on IoT-Based Deep Federated Collaborative Learning,” Int J Coop Inf Syst, Jun. 2023, doi: 10.1142/S0218843023500053. DOI: https://doi.org/10.1142/S0218843023500053

J. A. Esponda-Pérez et al., “Application of Chi-Square Test in E-learning to Assess the Association Between Variables,” 2024, pp. 274–281. doi: 10.1007/978-3-031-70595-3_28. DOI: https://doi.org/10.1007/978-3-031-70595-3_28

P. H. Nguyen, S. M. Almufti, J. A. Esponda-Pérez, D. Salguero García, I. Haris, and R. Tsarev, “The Impact of E-Learning on the Processes of Learning and Memorization,” 2024, pp. 218–226. doi: 10.1007/978-3-031-70595-3_23. DOI: https://doi.org/10.1007/978-3-031-70595-3_23

N. Rustamova, R. Rajab Asaad, and D. Fayzieva, “Blockchain-Driven Security Models for Privacy Preservation in IoT-Based Smart Cities,” Qubahan Techno Journal, pp. 1–17, Dec. 2023, doi: 10.48161/qtj.v2n4a22. DOI: https://doi.org/10.48161/qtj.v2n4a22

M. K. Sharma, H. A. Alkhazaleh, S. Askar, N. H. Haroon, S. M. Almufti, and M. R. Al Nasar, “FEM-supported machine learning for residual stress and cutting force analysis in micro end milling of aluminum alloys,” International Journal of Mechanics and Materials in Design, vol. 20, no. 5, pp. 1077–1098, Oct. 2024, doi: 10.1007/s10999-024-09713-9. DOI: https://doi.org/10.1007/s10999-024-09713-9

D. Wijaya and A. Hidarto, “The effects of cognitive grammar-grounded instruction and formal-traditional grammar instruction on learning simple past and past perfect,” Journal of Asia TEFL, vol. 15, no. 4, 2018, doi: 10.18823/asiatefl.2018.15.4.2.915. DOI: https://doi.org/10.18823/asiatefl.2018.15.4.2.915

R. Asaad, R. Ismail Ali, and S. Almufti, “Hybrid Big Data Analytics: Integrating Structured and Unstructured Data for Predictive Intelligence,” Qubahan Techno Journal, vol. 1, no. 2, Apr. 2022, doi: 10.48161/qtj.v1n2a14.

A. Yahya, “Systematic Review of Regression Algorithms for Predictive Analytics,” Qubahan Techno Journal, vol. 1, no. 4, Nov. 2022, doi: 10.48161/qtj.v1n4a17. DOI: https://doi.org/10.48161/qtj.v1n4a17

R. Asaad, R. Ismail Ali, and S. Almufti, “Hybrid Big Data Analytics: Integrating Structured and Unstructured Data for Predictive Intelligence,” Qubahan Techno Journal, Apr. 2022, doi: 10.48161/qtj.v1n2a14. DOI: https://doi.org/10.48161/qtj.v1n2a14

R. Rajab Asaad, R. Ismael Ali, A. Ahmad Shaban, and M. Shamal Salih, “Object Detection using the ImageAI Library in Python,” Polaris Global Journal of Scholarly Research and Trends, vol. 2, no. 2, pp. 1–9, Apr. 2023, doi: 10.58429/pgjsrt.v2n2a143. DOI: https://doi.org/10.58429/pgjsrt.v2n2a143

D. A. Majeed et al., “DATA ANALYSIS AND MACHINE LEARNING APPLICATIONS IN ENVIRONMENTAL MANAGEMENT,” Jurnal Ilmiah Ilmu Terapan Universitas Jambi, vol. 8, no. 2, pp. 398–408, Sep. 2024, doi: 10.22437/jiituj.v8i2.32769. DOI: https://doi.org/10.22437/jiituj.v8i2.32769

R. Mahafdah, S. Bouallegue, and R. Bouallegue, “Enhancing e-learning through AI: advanced techniques for optimizing student performance,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/PEERJ-CS.2576. DOI: https://doi.org/10.7717/peerj-cs.2576

A. E. Ranjith, “Sign Language Training Tool Using Machine Learning Techniques,” 2023. [Online]. Available: www.ijrpr.com

M. Dehghani, E. Trojovská, and P. Trojovský, “A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-14225-7. DOI: https://doi.org/10.1038/s41598-022-14225-7

Z. Liu, P. Agrawal, S. Singhal, V. Madaan, M. Kumar, and P. K. Verma, “LPITutor: An LLM based personalized intelligent tutoring system using RAG and prompt engineering,” PeerJ Comput Sci, vol. 11, 2025, doi: 10.7717/peerj-cs.2991. DOI: https://doi.org/10.7717/peerj-cs.2991

A. Ahmed Shaban, S. M. Almufti, and R. B. Marqas, “A Modified Bat Algorithm for Economic Dispatch with Enhanced Performance Metrics,” FMDB Transactions on Sustainable Technoprise Letters, vol. 3, no. 2, pp. 59–72, Jun. 2025, doi: 10.69888/ftstpl.2025.000437. DOI: https://doi.org/10.69888/FTSTPL.2025.000437

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)