Metaheuristics in Sustainable and Green Optimization
Main Article Content
Abstract
The accelerating global pursuit of sustainability has placed optimization at the forefront of achieving environmental, economic, and social balance. This study presents a comprehensive review of metaheuristic algorithms as powerful computational tools for addressing sustainable and green optimization challenges. By examining a broad range of classical and modern metaheuristics—including bio-inspired, physics-based, swarm intelligence, and hybrid models—this work explores how these algorithms are utilized to minimize energy consumption, carbon emissions, and resource waste across key sectors such as renewable energy systems, smart grids, sustainable manufacturing, and green logistics. The paper emphasizes the role of hybrid and intelligent adaptive metaheuristics in enhancing convergence speed, robustness, and scalability in complex, multi-objective optimization scenarios. Comparative analyses reveal the superiority of hybrid models in achieving accurate, energy-efficient, and environmentally responsible outcomes. Furthermore, the study highlights persistent challenges related to computational cost, parameter sensitivity, and real-time adaptability. By consolidating current findings and identifying open research directions—such as self-adaptive learning-based frameworks, unified benchmarking standards, and quantum-inspired metaheuristics—this review underscores the transformative potential of metaheuristic optimization in advancing the global sustainability agenda.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
A. Sadollah, M. Nasir, and Z. W. Geem, “Sustainability and optimization: From conceptual fundamentals to applications,” 2020. doi: 10.3390/su12052027. DOI: https://doi.org/10.3390/su12052027
N. Savanović et al., “Intrusion Detection in Healthcare 4.0 Internet of Things Systems via Metaheuristics Optimized Machine Learning,” Sustainability (Switzerland), vol. 15, no. 16, 2023, doi: 10.3390/su151612563. DOI: https://doi.org/10.3390/su151612563
S. M. Almufti, R. R. Asaad, and B. W. Salim, “Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems,” Article in International Journal of Engineering and Technology, vol. 7, no. 4, pp. 6109–6114, 2018, doi: 10.14419/ijet.v7i4.23127. DOI: https://doi.org/10.14419/ijet.v7i4.23127
R. Asaad and N. Abdulnabi, “Using Local Searches Algorithms with Ant Colony Optimization for the Solution of TSP Problems,” Academic Journal of Nawroz University, vol. 7, no. 3, pp. 1–6, 2018, doi: 10.25007/ajnu.v7n3a193. DOI: https://doi.org/10.25007/ajnu.v7n3a193
C. P. Jayarathna, D. Agdas, L. Dawes, and T. Yigitcanlar, “Multi-objective optimization for sustainable supply chain and logistics: A review,” 2021. doi: 10.3390/su132413617. DOI: https://doi.org/10.3390/su132413617
A. A. Juan et al., “A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics,” Ann Oper Res, vol. 320, no. 2, 2023, doi: 10.1007/s10479-021-04142-9. DOI: https://doi.org/10.1007/s10479-021-04142-9
R. S. Santos, A. J. P. da Costa Feliciano Abreu, and J. J. R. Monteiro, “Using metaheuristics-based methods to provide sustainable market solutions, suitable to consumer needs,” Advances in Science, Technology and Engineering Systems, vol. 5, no. 2, 2020, doi: 10.25046/aj050252. DOI: https://doi.org/10.25046/aj050252
M. O. Aguiar et al., “Metaheuristics applied for storage yards allocation in an Amazonian sustainable forest management area,” J Environ Manage, vol. 271, 2020, doi: 10.1016/j.jenvman.2020.110926. DOI: https://doi.org/10.1016/j.jenvman.2020.110926
M. Abdullah Alohali et al., “Metaheuristics with deep learning driven phishing detection for sustainable and secure environment,” Sustainable Energy Technologies and Assessments, vol. 56, 2023, doi: 10.1016/j.seta.2023.103114. DOI: https://doi.org/10.1016/j.seta.2023.103114
S. M. Almufti, “Fusion of Water Evaporation Optimization and Great Deluge: A Dynamic Approach for Benchmark Function Solving,” Fusion: Practice and Applications, vol. 13, no. 1, pp. 19–36, 2023, doi: 10.54216/FPA.130102. DOI: https://doi.org/10.54216/FPA.130102
S. M. Almufti, “Historical survey on metaheuristics algorithms,” International Journal of Scientific World, vol. 7, no. 1, p. 1, Nov. 2019, doi: 10.14419/ijsw.v7i1.29497. DOI: https://doi.org/10.14419/ijsw.v7i1.29497
C. G. Corlu, R. De La Torre, A. Serrano-Hernandez, A. A. Juan, and J. Faulin, “Optimizing energy consumption in transportation: Literature review, insights, and research opportunities,” Energies (Basel), vol. 13, no. 5, 2020, doi: 10.3390/en13051115. DOI: https://doi.org/10.3390/en13051115
J. S. Chou, T. C. Cheng, C. Y. Liu, C. Y. Guan, and C. P. Yu, “Metaheuristics-optimized deep learning to predict generation of sustainable energy from rooftop plant microbial fuel cells,” Int J Energy Res, vol. 46, no. 15, 2022, doi: 10.1002/er.8538. DOI: https://doi.org/10.1002/er.8538
H. Rathore, S. K. Jakhar, A. Bhattacharya, and E. Madhumitha, “Examining the mediating role of innovative capabilities in the interplay between lean processes and sustainable performance,” Int J Prod Econ, vol. 219, 2020, doi: 10.1016/j.ijpe.2018.04.029. DOI: https://doi.org/10.1016/j.ijpe.2018.04.029
S. M. Almufti, R. Boya Marqas, and V. Ashqi Saeed, “Taxonomy of bio-inspired optimization algorithms,” Journal of Advanced Computer Science & Technology, vol. 8, no. 2, p. 23, Aug. 2019, doi: 10.14419/jacst.v8i2.29402. DOI: https://doi.org/10.14419/jacst.v8i2.29402
S. Almufti, “Using Swarm Intelligence for solving NPHard Problems,” Academic Journal of Nawroz University, vol. 6, no. 3, pp. 46–50, 2017, doi: 10.25007/ajnu.v6n3a78. DOI: https://doi.org/10.25007/ajnu.v6n3a78
S. M. Almufti, “Exploring the Impact of Big Bang-Big Crunch Algorithm Parameters on Welded Beam Design Problem Resolution,” Academic Journal of Nawroz University, vol. 12, no. 4, pp. 1–16, Sep. 2023, doi: 10.25007/ajnu.v12n4a1903. DOI: https://doi.org/10.25007/ajnu.v12n4a1903
S. M. Almufti, “Vibrating Particles System Algorithm performance in solving Constrained Optimization Problem,” Academic Journal of Nawroz University, vol. 11, no. 3, pp. 231–242, Aug. 2022, doi: 10.25007/ajnu.v11n3a1499. DOI: https://doi.org/10.25007/ajnu.v11n3a1499
R. R. Ihsan, S. M. Almufti, B. M. S. Ormani, R. R. Asaad, and R. B. Marqas, “A Survey on Cat Swarm Optimization Algorithm,” Asian Journal of Research in Computer Science, pp. 22–32, Jun. 2021, doi: 10.9734/ajrcos/2021/v10i230237. DOI: https://doi.org/10.9734/ajrcos/2021/v10i230237
N. Rustamova and , Raveenthiran Vivekanantharasa, “Comprehensive Review and Hybrid Evolution of Teaching–Learning-Based Optimization,” Qubahan Techno Journal, vol. 2, no. 2, pp. 1–13, May 2023, doi: 10.48161/qtj.v2n2a19. DOI: https://doi.org/10.48161/qtj.v2n2a19
A. Shaban, R. Rajab Asaad, and S. Almufti, “The Evolution of Metaheuristics: From Classical to Intelligent Hybrid Frameworks,” Qubahan Techno Journal, vol. 1, no. 1, pp. 1–15, Jan. 2022, doi: 10.48161/qtj.v1n1a13. DOI: https://doi.org/10.48161/qtj.v1n1a13
M. Đurđev et al., “MODERN SWARM-BASED ALGORITHMS FOR THE TENSION/COMPRESSION SPRING DESIGN OPTIMIZATION PROBLEM,” 2021. Accessed: Sep. 26, 2025. [Online]. Available: https://www.proquest.com/scholarly-journals/modern-swarm-based-algorithms-tension-compression/docview/2568716563/se-2
A. T. Kamil, H. M. Saleh, and I. H. Abd-Alla, “A Multi-Swarm Structure for Particle Swarm Optimization: Solving the Welded Beam Design Problem,” J Phys Conf Ser, vol. 1804, no. 1, p. 012012, Feb. 2021, doi: 10.1088/1742-6596/1804/1/012012. DOI: https://doi.org/10.1088/1742-6596/1804/1/012012
D. Peng, G. Wu, and K. Boriboonsomsin, “Energy-Efficient Dispatching of Battery Electric Truck Fleets with Backhauls and Time Windows,” SAE International Journal of Electrified Vehicles, vol. 13, no. 1, 2023, doi: 10.4271/14-13-01-0009. DOI: https://doi.org/10.4271/14-13-01-0009
S. Mohseni, A. C. Brent, and D. Burmester, “A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid,” Appl Energy, vol. 259, 2020, doi: 10.1016/j.apenergy.2019.114224. DOI: https://doi.org/10.1016/j.apenergy.2019.114224
M. H. Almasi, Y. Oh, A. Sadollah, Y. J. Byon, and S. Kang, “Urban transit network optimization under variable demand with single and multi-objective approaches using metaheuristics: The case of Daejeon, Korea,” Int J Sustain Transp, vol. 15, no. 5, 2021, doi: 10.1080/15568318.2020.1821414. DOI: https://doi.org/10.1080/15568318.2020.1821414
A. S. Khan et al., “Application of exact and multi-heuristic approaches to a sustainable closed loop supply chain network design,” Sustainability (Switzerland), vol. 13, no. 5, 2021, doi: 10.3390/su13052433. DOI: https://doi.org/10.3390/su13052433
H. Alkabbani, A. Ahmadian, Q. Zhu, and A. Elkamel, “Machine Learning and Metaheuristic Methods for Renewable Power Forecasting: A Recent Review,” 2021. doi: 10.3389/fceng.2021.665415. DOI: https://doi.org/10.3389/fceng.2021.665415
B. Quan, S. Li, and K. J. Wu, “A hybrid metaheuristic algorithm to achieve sustainable production: involving employee characteristics in the job-shop matching problem,” Journal of Industrial and Production Engineering, vol. 40, no. 4, 2023, doi: 10.1080/21681015.2023.2184426. DOI: https://doi.org/10.1080/21681015.2023.2184426
S. Almufti, “Vibrating Particles System Algorithm: Overview, Modifications and Applications,” ICONTECH INTERNATIONAL JOURNAL, vol. 6, no. 3, pp. 1–11, Sep. 2022, doi: 10.46291/icontechvol6iss3pp1-11. DOI: https://doi.org/10.46291/ICONTECHvol6iss3pp1-11
S. M. Almufti and A. A. Shaban, “U-Turning Ant Colony Algorithm for Solving Symmetric Traveling Salesman Problem,” Academic Journal of Nawroz University, vol. 7, no. 4, p. 45, Dec. 2018, doi: 10.25007/ajnu.v7n4a270. DOI: https://doi.org/10.25007/ajnu.v7n4a270
S. M. Almufti, A. Ahmad Shaban, R. Ismael Ali, and J. A. Dela Fuente, “Overview of Metaheuristic Algorithms,” Polaris Global Journal of Scholarly Research and Trends, vol. 2, no. 2, pp. 10–32, Apr. 2023, doi: 10.58429/pgjsrt.v2n2a144. DOI: https://doi.org/10.58429/pgjsrt.v2n2a144