Blockchain-Driven Security Models for Privacy Preservation in IoT-Based Smart Cities

Main Article Content

Nodira Rustamova
Renas Rajab Asaad
Dilnoza R. Fayzieva

Abstract

The convergence of blockchain technology and the Internet of Things (IoT) has emerged as a transformative paradigm for developing secure, resilient, and privacy-preserving infrastructures in smart cities. Despite the rapid adoption of IoT across urban environments, centralized data management models continue to expose significant vulnerabilities, including single points of failure and data privacy breaches. This study proposes a blockchain-driven security framework that addresses these issues through decentralized identity verification, privacy-preserving data sharing, and scalability-enhancing mechanisms. The model integrates a Proof-of-Internet-of-Things (PIoT) consensus protocol with local peer networks and double-blind consent-driven data sharing to achieve both security and efficiency. Through simulation-based evaluations and real-world case studies in healthcare, traffic, and energy management, the proposed architecture demonstrates superior performance in transaction throughput, latency reduction, and energy efficiency compared with traditional blockchain systems. The results indicate that blockchain can substantially enhance data integrity and trust while maintaining privacy compliance under urban-scale IoT deployments. This research contributes to the growing body of knowledge by bridging the gap between theoretical blockchain constructs and practical, resource-constrained IoT applications, offering a scalable blueprint for secure smart city ecosystems.

Article Details

Section

Articles

How to Cite

Rustamova, N., Rajab Asaad, R., & Fayzieva, D. (2023). Blockchain-Driven Security Models for Privacy Preservation in IoT-Based Smart Cities. Qubahan Techno Journal, 2(4), 1-17. https://doi.org/10.48161/qtj.v2n4a22

References

G. S. Sushil, R. K. Deshmuk, and A. A. Junnarkar, “Security Challenges and Cyber Forensics For IoT Driven BYOD Systems,” in 2022 IEEE 7th International conference for Convergence in Technology, I2CT 2022, 2022. doi: 10.1109/I2CT54291.2022.9824368. DOI: https://doi.org/10.1109/I2CT54291.2022.9824368

J. J. Chen et al., “How to do Deep Learning on Graphs with Graph Convolutional Networks,” IEEE Access, vol. 8, no. 1, 2019.

N. Nandhini, V. Manikandan, G. Manavaalan, S. Elango, C. Jeevakarunya, and P. V. Kumar, “A Survey on Intrusion Detection System in Smart City: Security Concerns,” in 2023 7th International Conference on Computer Applications in Electrical Engineering-Recent Advances: Sustainable Transportation Systems, CERA 2023, 2023. doi: 10.1109/CERA59325.2023.10455491. DOI: https://doi.org/10.1109/CERA59325.2023.10455491

R. Salama and M. Ragab, “Blockchain with Explainable Artificial Intelligence Driven Intrusion Detection for Clustered IoT Driven Ubiquitous Computing System,” Computer Systems Science and Engineering, vol. 46, no. 3, 2023, doi: 10.32604/csse.2023.037016. DOI: https://doi.org/10.32604/csse.2023.037016

C. S. S. Anupama et al., “Wind Driven Optimization-Based Medical Image Encryption for Blockchain-Enabled Internet of Things Environment,” Computers, Materials and Continua, vol. 73, no. 2, 2022, doi: 10.32604/cmc.2022.030267. DOI: https://doi.org/10.32604/cmc.2022.030267

A. M. R. Alsobeh and A. A. Magableh, “BlockASP: A Framework for AOP-Based Model Checking Blockchain System,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3325060. DOI: https://doi.org/10.1109/ACCESS.2023.3325060

Z. Alabaddi, A. Obidat, and Z. Alziyadat, “Exploring the effect of blockchain technology on supply chain resilience and transparency: Evidence from the healthcare industry,” Uncertain Supply Chain Management, vol. 11, no. 2, 2023, doi: 10.5267/j.uscm.2023.1.001. DOI: https://doi.org/10.5267/j.uscm.2023.1.001

W. Chen, Y. Chen, X. Chen, and Z. Zheng, “Toward Secure Data Sharing for the IoV: A Quality-Driven Incentive Mechanism with On-Chain and Off-Chain Guarantees,” IEEE Internet Things J, vol. 7, no. 3, 2020, doi: 10.1109/JIOT.2019.2946611. DOI: https://doi.org/10.1109/JIOT.2019.2946611

H. Xu, J. Wu, Q. Pan, X. Guan, and M. Guizani, “A Survey on Digital Twin for Industrial Internet of Things: Applications, Technologies and Tools,” IEEE Communications Surveys and Tutorials, vol. 25, no. 4, 2023, doi: 10.1109/COMST.2023.3297395. DOI: https://doi.org/10.1109/COMST.2023.3297395

N. Jiang, F. Bai, L. Huang, Z. An, and T. Shen, “Reputation-Driven Dynamic Node Consensus and Reliability Sharding Model in IoT Blockchain,” Algorithms, vol. 15, no. 2, 2022, doi: 10.3390/a15020028. DOI: https://doi.org/10.3390/a15020028

L. Zhang et al., “A Novel Smart Contract Vulnerability Detection Method Based on Information Graph and Ensemble Learning,” Sensors, vol. 22, no. 9, 2022, doi: 10.3390/s22093581. DOI: https://doi.org/10.3390/s22093581

A. S. Rajawat, S. B. Goyal, P. Bedi, C. Verma, E. I. Ionete, and M. S. Raboaca, “5G-Enabled Cyber-Physical Systems for Smart Transportation Using Blockchain Technology,” Mathematics, vol. 11, no. 3, 2023, doi: 10.3390/math11030679. DOI: https://doi.org/10.3390/math11030679

E. R. D. Villarreal, J. Garcia-Alonso, E. Moguel, and J. A. H. Alegria, “Blockchain for Healthcare Management Systems: A Survey on Interoperability and Security,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3236505. DOI: https://doi.org/10.1109/ACCESS.2023.3236505

J. Köpke, G. Meroni, and M. Salnitri, “Designing secure business processes for blockchains with SecBPMN2BC,” Future Generation Computer Systems, vol. 141, 2023, doi: 10.1016/j.future.2022.11.013. DOI: https://doi.org/10.1016/j.future.2022.11.013

A. Attkan, V. Ranga, and P. Ahlawat, “A Rubik’s Cube Cryptosystem-based Authentication and Session Key Generation Model Driven in Blockchain Environment for IoT Security,” ACM Transactions on Internet of Things, vol. 4, no. 2, 2023, doi: 10.1145/3586578. DOI: https://doi.org/10.1145/3586578

A. J. M. Milne, A. Beckmann, and P. Kumar, “Cyber-Physical Trust Systems Driven by Blockchain,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2984675. DOI: https://doi.org/10.1109/ACCESS.2020.2984675

M. Al Asqah and T. Moulahi, “Federated Learning and Blockchain Integration for Privacy Protection in the Internet of Things: Challenges and Solutions,” 2023. doi: 10.3390/fi15060203. DOI: https://doi.org/10.3390/fi15060203

A. Shaban, R. Rajab Asaad, and S. Almufti, “The Evolution of Metaheuristics: From Classical to Intelligent Hybrid Frameworks,” Qubahan Techno Journal, vol. 1, no. 1, pp. 1–15, Jan. 2022, doi: 10.48161/qtj.v1n1a13. DOI: https://doi.org/10.48161/qtj.v1n1a13

R. Asaad, R. Ismail Ali, and S. Almufti, “Hybrid Big Data Analytics: Integrating Structured and Unstructured Data for Predictive Intelligence,” Qubahan Techno Journal, vol. 1, no. 2, Apr. 2022, doi: 10.48161/qtj.v1n2a14. DOI: https://doi.org/10.48161/qtj.v1n2a14

R. Rajab Asaad, R. Ismael Ali, Z. Arif Ali, and A. Ahmad Shaaban, “Image Processing with Python Libraries,” Academic Journal of Nawroz University, vol. 12, no. 2, pp. 410–416, Jun. 2023, doi: 10.25007/ajnu.v12n2a1754. DOI: https://doi.org/10.25007/ajnu.v12n2a1754

H. Treiblmaier et al., “The poultry industry and its supply chain in Malaysia: Challenges from the Covid-19 emergency,” Res. J, vol. 215, no. 5, 2023.

C. Wang, X. Tan, C. Yao, F. Gu, F. Shi, and H. Cao, “Trusted Blockchain-Driven IoT Security Consensus Mechanism,” Sustainability (Switzerland), vol. 14, no. 9, 2022, doi: 10.3390/su14095200. DOI: https://doi.org/10.3390/su14095200

C. Narmatha, S. Manimurugan, and P. Karthikeyan, “A Smart CIoT with Secure Healthcare Framework Using Optimized Deep Recuperator Neural Network Long Short-Term Memory,” IEEE Internet Things J, vol. 11, no. 6, 2024, doi: 10.1109/JIOT.2023.3326547. DOI: https://doi.org/10.1109/JIOT.2023.3326547

A. H. Lone and R. N. Mir, “Reputation Driven Dynamic Access Control Framework for IoT atop PoA Ethereum Blockchain.,” IACR Cryptol. ePrint Arch., vol. 2020, 2020.

R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, S. Garg, and M. M. Hassan, “BDTwin: An Integrated Framework for Enhancing Security and Privacy in Cybertwin-Driven Automotive Industrial Internet of Things,” IEEE Internet Things J, vol. 9, no. 18, 2022, doi: 10.1109/JIOT.2021.3122021. DOI: https://doi.org/10.1109/JIOT.2021.3122021

X. Yang, H. Wen, L. Liu, N. Ren, and C. Wang, “Blockchain-enhanced certificateless signature scheme in the standard model,” Mathematical Biosciences and Engineering, vol. 20, no. 7, 2023, doi: 10.3934/mbe.2023567. DOI: https://doi.org/10.3934/mbe.2023567

N. L. Rane, “Integrating Leading-Edge Artificial Intelligence (AI), Internet of Things (IoT), and Big Data Technologies for Smart and Sustainable Architecture, Engineering and Construction (AEC) Industry: Challenges and Future Directions,” International Journal of Data Science and Big Data Analytics, vol. 3, no. 2, 2023, doi: 10.51483/ijdsbda.3.2.2023.73-95. DOI: https://doi.org/10.51483/IJDSBDA.3.2.2023.73-95

Z. Zhang et al., “TBDD: A new trust-based, DRL-driven framework for blockchain sharding in IoT,” Computer Networks, vol. 244, 2024, doi: 10.1016/j.comnet.2024.110343. DOI: https://doi.org/10.1016/j.comnet.2024.110343

A. Ouaddah and B. Bellaj, “FairAccess2.0: A smart contract-based authorization framework for enabling granular access control in IoT,” International Journal of Information and Computer Security, vol. 15, no. 1, 2021, doi: 10.1504/IJICS.2021.115346. DOI: https://doi.org/10.1504/IJICS.2021.115346

S. D, “A Data Driven Trust Mechanism Based on Blockchain in IoT Sensor Networks for Detection and Mitigation of Attacks,” Journal of Trends in Computer Science and Smart Technology, vol. 3, no. 1, 2021, doi: 10.36548/jtcsst.2021.1.006. DOI: https://doi.org/10.36548/jtcsst.2021.1.006

X. Guo, G. Liang, J. Liu, and X. Chen, “Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform,” Computers, Materials and Continua, vol. 77, no. 3, 2023, doi: 10.32604/cmc.2023.044529. DOI: https://doi.org/10.32604/cmc.2023.044529

S. Garg, K. Kaur, G. Kaddoum, P. Garigipati, and G. S. Aujla, “Security in IoT-Driven Mobile Edge Computing: New Paradigms, Challenges, and Opportunities,” IEEE Netw, vol. 35, no. 5, 2021, doi: 10.1109/MNET.211.2000526. DOI: https://doi.org/10.1109/MNET.211.2000526

B. Ren, L. T. Yang, Q. Zhang, J. Feng, and X. Nie, “Blockchain-Powered Tensor Meta-Learning-Driven Intelligent Healthcare System With IoT Assistance,” IEEE Trans Netw Sci Eng, vol. 10, no. 5, 2023, doi: 10.1109/TNSE.2022.3227317. DOI: https://doi.org/10.1109/TNSE.2022.3227317

J. A. Alzubi, “Blockchain-based Lamport Merkle Digital Signature: Authentication tool in IoT healthcare,” Comput Commun, vol. 170, 2021, doi: 10.1016/j.comcom.2021.02.002. DOI: https://doi.org/10.1016/j.comcom.2021.02.002

P. Singh, M. J. Beliatis, and M. Presser, “Enabling edge-driven Dataspace integration through convergence of distributed technologies,” 2024. doi: 10.1016/j.iot.2024.101087. DOI: https://doi.org/10.1016/j.iot.2024.101087

A. M. Alabdali, “A Novel Framework of an IOT-Blockchain-Based Intelligent System,” Wirel Commun Mob Comput, vol. 2022, 2022, doi: 10.1155/2022/4741923. DOI: https://doi.org/10.1155/2022/4741923

M. Umer et al., “IoT based smart home automation using blockchain and deep learning models,” PeerJ Comput Sci, vol. 9, 2023, doi: 10.7717/peerj-cs.1332. DOI: https://doi.org/10.7717/peerj-cs.1332

W. Tong, X. Dong, Y. Shen, X. Jiang, and Z. Zhang, “A blockchain-driven data exchange model in multi-domain IoT with controllability and parallelity,” Future Generation Computer Systems, vol. 135, 2022, doi: 10.1016/j.future.2022.04.026. DOI: https://doi.org/10.1016/j.future.2022.04.026

M. ElKashlan, M. S. Elsayed, A. D. Jurcut, and M. Azer, “A Machine Learning-Based Intrusion Detection System for IoT Electric Vehicle Charging Stations (EVCSs),” Electronics (Switzerland), vol. 12, no. 4, 2023, doi: 10.3390/electronics12041044. DOI: https://doi.org/10.3390/electronics12041044

P. Salva-Garcia, J. M. Alcaraz-Calero, Q. Wang, J. B. Bernabe, and A. Skarmeta, “5G NB-IoT: Efficient Network Traffic Filtering for Multitenant IoT Cellular Networks,” Security and Communication Networks, vol. 2018, 2018, doi: 10.1155/2018/9291506. DOI: https://doi.org/10.1155/2018/9291506

A. Vergutz, B. V. D. Santos, B. Kantarci, and M. Nogueira, “Data Instrumentation From IoT Network Traffic as Support for Security Management,” IEEE Transactions on Network and Service Management, vol. 20, no. 2, 2023, doi: 10.1109/TNSM.2022.3233673. DOI: https://doi.org/10.1109/TNSM.2022.3233673

K. Lei et al., “Blockchain-Based Cache Poisoning Security Protection and Privacy-Aware Access Control in NDN Vehicular Edge Computing Networks,” J Grid Comput, vol. 18, no. 4, 2020, doi: 10.1007/s10723-020-09531-1. DOI: https://doi.org/10.1007/s10723-020-09531-1

Similar Articles

You may also start an advanced similarity search for this article.